

Maximum Marks: 40

Duration: 90 mins

Section-A

Questions 1 to 7 carry 1 mark each

- Evaluate $\int e^x \left(\frac{2 + \sin 2x}{1 + \cos 2x} \right) dx$
 - $e^x \tan x + C$
 - $e^x \cot x + C$
 - $e^x (x + \tan x) + C$
 - $e^x (x + \cot x) + C$
- Find the interval in which $f(x) = x^2 - 4x + 5$ is increasing
 - $(2, \infty)$
 - $(-\infty, 2)$
 - $(3, \infty)$
 - $(-\infty, \infty)$
- If $x = a(\cos t + t \sin t)$ and $y = a(\sin t - t \cos t)$ then the value of $\frac{d^2y}{dx^2}$ is
 - $\frac{t}{a} \sec^3 t$
 - $at \sec^3 t$
 - $\frac{1}{at} \sec^3 t$
 - $\frac{a}{t} \sec^3 t$
- What is the position of the particle moving along the parabola $y^2 = 4x$ at which the rate of increase of the abscissa is twice the rate of increase of the ordinate?
 - $(1, 1)$
 - $(2, 2)$
 - $(3, 3)$
 - $(4, 4)$
- Find the sum of the order and degree of the differential equation $(y''')^2 + 7y' - (\cos x)^2 = 0$
 - 5
 - 2
 - 3
 - Not Defined
- Integrating factor of the differential equation $(1 - x^2) \frac{dy}{dx} - xy = 1$ is..
 - $-x$
 - $\frac{x}{1+x^2}$
 - $\sqrt{1 - x^2}$
 - $\frac{1}{2} \log(1 - x^2)$
- The rate of change of the volume of a sphere with respect to its surface area, when its radius is
 - 1 unit
 - 2 units
 - 3 units
 - None of these

Section B

Questions 8 to 12 carry 2 marks each

- Determine the value of k for which the following function is continuous at $x=3$:

$$f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3 \\ k, & x = 3 \end{cases}$$

- Differentiate $\tan^{-1} \left(\frac{1 + \cos x}{\sin x} \right)$ with respect to x .

[Solution to the test](#)[Join our telegram channel](#)

10. Evaluate $\int \frac{dx}{\sin^2 x \cdot \cos^2 x}$

11. Using integration, find the area bounded by the curve $x^2 = 4y$, $x = 2$ and the X axis in the First Quadrant.

12. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.

Section C

Questions 13 to 15 carry 3 marks each

13. If $y = (x + \sqrt{1 + x^2})^n$, then show that $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = n^2 y$

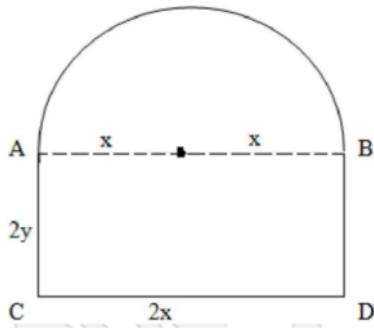
14. Show that the function $f(x) = |x + 1| + |x - 1|$, for all $x \in \mathbf{R}$ is not differentiable at the points $x = -1$ and $x = 1$.

15. Using integration, find the area of the region bounded by the curves $y = |x + 1| + 1$, $x = -3$, $x = 3$ and $y = 0$.

Section D

Questions 16 to 17 carry 5 marks each

16. Evaluate $\int (x + 3)\sqrt{(3 - 4x - x^2)} dx$


17. Solve the following differential equation given that $y=0$ when $x=1$

$$xdy - ydx = \sqrt{x^2 + y^2}$$

Section E

Questions 18 carries 4 marks (1+1+2)

18. Dr. Anuradha residing in Chandigarh went to see an apartment of 3 BHK sector 31. The window of the house was in the form of a rectangle surmounted by a semicircular opening having a perimeter of the window 10 m in as shown in the figure below:

Based on the above information answer the following:

- Find the relation between x and y
- Express the area 'A' of the window as a function of x
- (A) For what value of x will the window have maximum area?

OR

- (B) For what value of y will the window have maximum area?

[Solution to the test](#)

[Join our telegram channel](#)

