Table of Contents
Introduction
Textile Engineering and Fibre Science is a specialized branch of engineering that deals with the study of textile materials, manufacturing processes, and the design of textile products. It combines principles from engineering, chemistry, physics, and material science to understand the properties of fibers, yarns, and fabrics and their applications in various industries. The Graduate Aptitude Test in Engineering (GATE) is an all-India examination conducted jointly by the Indian Institutes of Technology (IITs) and the Indian Institute of Science (IISc) on behalf of the National Coordination Board (NCB)-GATE, Department of Higher Education, Ministry of Education (MoE), Government of India.
The Textile Engineering and Fibre Science GATE examination provides a platform for aspiring textile engineers to demonstrate their knowledge, technical expertise, and creativity in this innovative field. By qualifying in GATE, candidates can gain admission to postgraduate programs (Masters and Doctoral) in esteemed institutions across India, including IITs, NITs, and other universities offering textile engineering and fibre science courses.
Textile Engineering and Fibre Science Subject Code: TF
Topic wise detailed syllabus for GATE 2023: Textile Engineering and Fibre Science.
ENGINEERING MATHEMATICS
Linear Algebra: Matrices and Determinants; Systems of linear equations; Eigenvalues and Eigenvectors.
Calculus: Limit, continuity and differentiability; Successive differentiation; Partial differentiation; Maxima and minima; Errors and approximations; Definite and improper integrals; Sequences and series; Test for convergence; Power series; Taylor series.
Differential Equations: First order linear and non-linear differential equations; Higher order linear differential equations with constant coefficients; Euler-Cauchy equation; Partial differential equations; Wave and heat equations; Laplace’s equation.
Probability and Statistics: Random variables; Poisson, binomial and normal distributions; Mean, mode, median, standard deviation; Confidence interval; Test of hypothesis; Correlation analysis; Regression analysis; Analysis of variance; Control charts.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; Numerical integration by trapezoidal and Simpson’s rules; Single-step and multi-step numerical methods for differential equations.
TEXTILE ENGINEERING AND FIBRE SCIENCE
Section 1: Textile Fibres
Classification of textile fibres; Essential requirements of fibre forming polymers; Gross and fine structures of natural fibres like cotton, wool, silk; Introduction to bast fibres; Properties and uses of natural and man-made fibres including carbon, aramid and ultra-high molecular weight polyethylene fibres; Physical and chemical methods of fibre and blend identification and blend analysis.
Molecular architecture, amorphous and crystalline phases, glass transition, plasticization, crystallization, melting, factors affecting Tg and Tm; Polymerization of nylon-6, nylon-66, poly (ethylene terephthalate), polyacrylonitrile and polypropylene; Melt spinning processes for PET, polyamide and polypropylene; Preparation of spinning dope; Principles of wet spinning, dry spinning, dry-jet-wet spinning and gel spinning; Spinning of acrylic, viscose and other regenerated cellulosic fibres such as polynosic and lyocell; Post spinning operations such as drawing, heat setting, tow-to-top conversion; Spin finish composition and applications; Different texturing methods.
Methods of investigating fibre structure such as density, x-ray diffraction, birefringence, optical and electron microscopy such as SEM and TEM, I.R. spectroscopy, thermal methods such as DSC, DMA, TMA and TGA; Structure and morphology of man-made fibres; Mechanical properties of fibres; Moisture sorption of fibres; Fibre structure-property correlation.
Section 2: Yarn Manufacture, Yarn Structure and Properties
Principles of ginning; Principles of opening, cleaning and blending; Working principles of modern blow room machines; Fundamentals of carding; Conventional vs. modern carding machine; Card setting; Card clothing; Periodic mass variation in card sliver; Card auto leveller; Principles of roller drawing; Roller arrangements in drafting systems; Periodic mass variation in drawn sliver; Draw frame auto leveller; Principles of cotton combing; Combing cycle and mechanisms; Recent developments in combing machine; Principles of drafting, twisting, and bobbin building in roving formation; Modern developments in roving machine; Principles of drafting, twisting and cop building in ring spinning; Causes of end breakages; Modern developments in ring spinning machine; Working principles of ring doubler and two-for-one twister; Relationship between single yarn twist and folded yarn twist; Principles of compact, rotor, air-jet, air-vortex, friction, core, wrap and twistless spinning processes.
Influence of fibre geometry, fibre configuration and fibre orientation in yarn; Fibre packing density of yarn; Yarn diameter; Yarn twist and its relation to yarn strength; Helical arrangement of fibres in yarns; Yarn contraction; Fibre migration in yarns; Stress-strain relation in yarn; Mass irregularity of yarn; Structure-property relationship in ring, compact, rotor, air-jet and friction spun yarns.
Section 3: Fabric Manufacture, Structure and Properties
Principles of winding processes; Classification of winding methods; Patterning mechanism; Yarn clearers and tensioners; Different systems of yarn splicing; Warping objectives and classification; Different types of warping creels; Features of beam and sectional warping machines; Different sizing systems; Sizing of spun and filament yarns; Drawing-in process; Principles of pirn winding.
Primary and secondary motions of loom; Shedding motion; Positive and negative shedding mechanisms; Type of sheds; Tappet, dobby and jacquard shedding; Weft insertion; Mechanics of weft insertion with shuttle; Shuttle picking and checking; Beat-up; Kinematics of sley; Loom timing diagram; Cam designing; Effect of sley setting and cam profile on fabric formation; Take-up and Let-off motions; Warp and weft stop motions; Warp protection; Weft replenishment; Principles of weft insertion systems of shuttle-less weaving machines such as projectile, rapier, water-jet and air-jet; Principles of functioning of multiphase and circular looms; Types of selvedges. Basic woven fabric constructions and their derivatives; Crepe, cord, terry, gauze, leno and double cloth constructions; Drawing and lifting plans.
Fundamentals of weft knitting; Classification of weft knitting technologies; Weft knitted constructions such as plain, rib, interlock and purl; Different knit stitches such as loop, tuck and float. Principle of warp knitting; Classification of warp knitting technologies; Swinging and shogging motion of guide bar; Basic warp knit construction such as pillar, tricot, atlas, inlay and nets. Fibre preparation processes for nonwovens; Web formation and bonding processes; Spun-bonding and melt-blowing technologies; Applications of nonwoven fabrics. Principles of braiding; Type of braids; Maypole braiding technology. Peirce’s equations for plain woven fabric geometry; Elastic a model of plain-woven fabric; Thickness, cover and maximum set of woven fabrics; Geometry of plain weft knitted loop; Munden’s constants and tightness factor for plain weft knitted fabrics; Geometry of tubular braids.
Section 4: Textile Testing
Sampling techniques for fibres, yarns and fabrics; Sample size and sampling errors. Moisture in textiles; Fibre length, fineness, crimp, maturity and trash content; Tensile testing of fibres; High volume fibre testing. Linear density of sliver, roving and yarn; Twist and hairiness of yarn; Tensile testing of yarns; Evenness testing; Fault measurement and analysis of yarns. Fabric thickness, compressibility, stiffness, shear, drape, crease recovery, tear strength, bursting strength, pilling and abrasion resistance; Tensile testing of fabrics; Objective evaluation of low stress mechanical characteristics; Air permeability; Wetting and wicking; Water-vapour transmission through fabrics; Thermal resistance of fabrics.
Section 5: Chemical Processing
Impurities in natural fibre; Singeing; Chemistry and practice of preparatory processes for cotton; Preparatory processing of wool and silk; Mercerization of cotton; Preparatory processesfor manmade fibres and their blends; Optical brightening agent. Classification of dyes; Dyeing of cotton, wool, silk, polyester, nylon and acrylic with appropriate classes of dyes; Dyeing of polyester/cotton and polyester/wool blends; Dyeing machines; Dyeing processes and machines for cotton knitted fabrics; Dye-fibreinteraction; Introduction to thermodynamics and kinetics of dyeing; Brief idea about the relation between colour and chemical constitution; Beer-Lambert’s law; Kubelka-Munk theory and its application in colour measurement; Methods for determination of wash, light and rubbing fastness.
Methods of printing such as roller printing and screen printing; Preparation of printing paste; Various types of thickeners; Printing auxiliaries; Direct styles of printing of (i) cotton with reactive dyes, (ii) wool, silk, nylon with acid and metal complex dyes, (iii) polyester with disperse dyes; Resist and discharge printing of cotton, silk and polyester; Pigment printing; Transfer printing of polyester; Inkjet printing; Printing faults.
Mechanical finishing of cotton; Stiff, soft, wrinkle resistant, water repellent, flame retardant and enzyme (bio-polishing) finishing of cotton; Milling, decatizing and shrink resistant finishing of wool; Antistatic and soil release finishing; Heat setting of synthetic fabrics; Minimum application techniques. Pollution control and treatment of effluents.
GATE Textile Engineering and Fibre Science Result analysis
Gate Textile Engineering and Fibre Science topper score by year
Year | Papers | Marks | Score |
2022 | GATE Textile Engineering and Fibre Science | 81.33 | 1000 |
2021 | GATE Textile Engineering and Fibre Science | 79.67 | 1000 |
GATE Textile Engineering and Fibre Science cut-off by year
Year | Cut Off |
2021 | 41.8 |
2020 | 37.1 |
2019 | 40.1 |
2018 | 41.3 |
Number of students appearing for GATE Textile Engineering and Fibre Science Exam
Year | Registered candidates | Candidates appeared | Qualified candidates |
2022 | 2750 | 1987 | 435 |
2021 | – | 1643 | 346 |
2020 | 1920 | 1584 | _ |
2019 | 2093 | 1795 | – |
2018 | 2150 | 1847 | – |
2017 | 1658 | 1453 | 317 |
Previous Year Question Papers
Download previous year question papers from the official GATE website click here.
Video Links For Textile Engineering and Fibre Science
Textile Engineering and Fibre Science Introduction