This exercise is based on formulas for integration, before you start the exercise it is advised that you go through the formulas from the following link. Important integration formulas
Question 1: Evaluate: \int_{-1}^{1} (x + 1) \ dx
Solution:
\begin{aligned} I = \int_{-1}^{1} (x + 1) \ dx \end{aligned}
I = \Big[ \tfrac{x^{2}}{2} + x \Big]_{-1}^{1}
I = \Big( \tfrac{1}{2} + 1 \Big) - \Big( \tfrac{1}{2} - 1 \Big)
I = 2.\
Final Answer: \boxed{ \int_{-1}^{1} (x + 1) \ dx = 2}
Question 2: Evaluate: \int_{2}^{3} \dfrac{1}{x} \ dx
Solution:
I = \int_{2}^{3} \dfrac{1}{x} dx
I = [ \ln x ]_{2}^{3}
I = ln 3 - ln 2
I = \ln \dfrac{3}{2}. \
Final Answer: \boxed{ \int_{2}^{3} \dfrac{1}{x} dx = \ln \dfrac{3}{2}}
Question 3: \int_{1}^{2} \big(4x^{3} - 5x^{2} + 6x + 9\big) \ dx
Solution:
I = \int_{1}^{2} (4x^{3} - 5x^{2} + 6x + 9) \ dx
I = \Big[ x^{4} - \tfrac{5}{3}x^{3} + 3x^{2} + 9x \Big]_{1}^{2}
I = [ 2^{4} - \tfrac{5}{3}\cdot2^{3} + 3\cdot2^{2} + 9\cdot2 \Big] - [ 1^{4} - \tfrac{5}{3}\cdot1^{3} + 3\cdot1^{2} + 9\cdot1 \Big]
I = \dfrac{64}{3}
Final Answer: \boxed{\int_{1}^{2} (4x^{3} - 5x^{2} + 6x + 9) \ dx = \dfrac{64}{3}}
Question 4: \int_{0}^{\tfrac{\pi}{4}} \sin 2x \ dx
Solution:
I = \int_{0}^{\tfrac{\pi}{4}} \sin 2x \ dx
I = \Big[ -\tfrac{1}{2}\cos 2x \Big]_{0}^{\pi/4}
I = 0 - \Big( -\tfrac{1}{2} \Big)
I = \tfrac{1}{2}
Final Answer: \boxed{\int_{0}^{\tfrac{\pi}{4}} \sin 2x \ dx = \tfrac{1}{2}}
Question 5: \int_{0}^{\tfrac{\pi}{2}} \cos 2x \ dx
Solution:
I = \int_{0}^{\tfrac{\pi}{2}} \cos 2x \ dx
I = \Big[ \tfrac{1}{2}\sin 2x \Big]_{0}^{\pi/2}
I = \Big[ \tfrac{1}{2}\sin (2\cdot \frac{\pi}{2}) \Big] - \Big[ \tfrac{1}{2}\sin 2\cdot 0 \Big]
I = \Big[ \tfrac{1}{2}\sin (\pi) \Big] - \Big[ \tfrac{1}{2}\sin 0 \Big]
I = 0 - 0
Final Answer: \boxed{ I = 0}
Question 6: \int_{4}^{5} e^{x} \ dx
Solution:
I = \int_{4}^{5} e^{x} dx
I = [ e^{x} ]_{4}^{5}
I = e^{5} - e^{4}
Final Answer: \boxed{I = e^{4} (e - 1)}
Question 7: \int_{0}^{\tfrac{\pi}{4}} \tan x , dx
Solution:
I = \int_{0}^{\tfrac{\pi}{4}} \tan x \ dx
I = [ \ln \sec x ]_{0}^{\pi/4}
I = \ln |\sec(\pi/4)| - \ln |\sec(0)|
I= \ln \sqrt{2} - \ln 1
I = \tfrac{1}{2}\ln 2 - 0
I = \tfrac{1}{2}\ln 2
Final Answer: \boxed{\int_{0}^{\tfrac{\pi}{4}} \tan x \ dx = \tfrac{1}{2}\ln 2}
Question 8: \int_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}} \cosec x \ dx
Solution:
I = \int_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}} \cosec x \ dx
I = \Big [log |csc(x) - cot (x)| \Big ]_{\frac{\pi}{6}}^{\frac{\pi}{4}}
I = \Big [log |csc(\frac{\pi}{4}) - cot (\frac{\pi}{4})| \Big ] - \Big [log |csc(\frac{\pi}{6}) - cot (\frac{\pi}{6})| \Big ]
I = log |\sqrt {2} - 1| - log |2 - \sqrt {3}|
I = log \Big | \tfrac{\sqrt {2} - 1}{2 - \sqrt {3}} \Big |
Final Answer: \boxed{ \int_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}} \cosec x \ dx = log \Big | \tfrac{\sqrt {2} - 1}{2 - \sqrt {3}} \Big | }
Question 9: \int_{0}^{1} \dfrac{dx}{\sqrt{1 - x^{2}}}
Solution:
I = \int_{0}^{1} \dfrac{dx}{\sqrt{1 - x^{2}}}
I = [ \sin^{-1} x ]_{0}^{1}
I = [ \sin^{-1} 1] - [ \sin^{-1} 0]
I = \tfrac{\pi}{2} - 0
Final Answer: \boxed{ \int_{0}^{1} \dfrac{dx}{\sqrt{1 - x^{2}}} = \tfrac{\pi}{2} }
Question 10: \int_{0}^{1} \dfrac{dx}{1 + x^{2}}
Solution:
I = \int_{0}^{1} \dfrac{dx}{1 + x^{2}}
I = [ \tan^{-1} x ]_{0}^{1}
I = [ \tan^{-1} 1 ] - [ \tan^{-1} 0 ]
I = \tfrac{\pi}{4} - 0
Final Answer: \boxed{ \int_{0}^{1} \dfrac{dx}{1 + x^{2}} = \tfrac{\pi}{4}}
Question 11: \int_{2}^{3} \dfrac{dx}{x^{2} - 1}
Solution:
I = \int_{2}^{3} \dfrac{dx}{x^2-1} \ dx
I= \int_{2}^{3} \dfrac{dx}{(x - 1)(x + 1)} \ dx
I = \int_{2}^{3} \dfrac{1}{2}\Big( \dfrac{1}{x - 1} - \dfrac{1}{x + 1} \Big) \ dx
I = \dfrac{1}{2} \int_{2}^{3} \Big( \dfrac{1}{x - 1} - \dfrac{1}{x + 1} \Big) \ dx
I = \dfrac{1}{2} \Big[ log(x - 1) - log(x + 1) \Big]_{2}^{3}
I = \dfrac{1}{2} \Big[ (log(2) - log(4)) - ( log (1) - log (3)) \Big]
I = \dfrac{1}{2} \Big[ (log(2) - 2 \cdot log(2)) - ( - log (3)) \Big]
I = \dfrac{1}{2} \Big[ (log(3) - log(2)) \Big]
I = \dfrac{1}{2} \cdot log \Big( \frac{3}{2} \Big)
Final Answer: \boxed{ \int_{2}^{3} \dfrac{dx}{x^2-1} \ dx = \dfrac{1}{2} \cdot log \frac{3}{2} }
Question 12: \int_{0}^{\tfrac{\pi}{2}} \cos^{2} x \ dx
Solution:
I = \int_{0}^{\tfrac{\pi}{2}} \cos^{2} x \ dx
I = \int_{0}^{\pi/2} \tfrac{1}{2}(1+\cos 2x) \ dx
I = \Big[ \tfrac{x}{2} + \tfrac{\sin 2x}{4} \Big]_{0}^{\pi/2}
I = \Big[ \tfrac{\pi}{4} + \tfrac{\sin \pi}{4} \Big] - \Big[ \tfrac{0}{4} + \tfrac{\sin 0}{4} \Big]
I = \tfrac{\pi}{4}
Final Answer: \boxed{ \int_{0}^{\tfrac{\pi}{2}} \cos^{2} x \ dx = \dfrac{\pi}{4}}
Question 13: \int_{2}^{3} \dfrac{x}{x^{2}+1} \ dx
Solution:
I = \int_{2}^{3} \dfrac{x}{x^{2}+1} \ dx
Let x^2 + 1 = t \implies 2x = \dfrac{dt}{dx} \implies x \cdot dx = \dfrac {dt}{2}
\int \dfrac{x}{x^{2}+1} \ dx = \dfrac {1}{2} \int \dfrac{dt}{t}
\int \dfrac{x}{x^{2}+1} \ dx = \dfrac {1}{2} \log t
Substituting back t
\int \dfrac{x}{x^{2}+1} \ dx = \dfrac {1}{2} \log |x^2 + 1|
I = \Big [ \dfrac {1}{2} \log |x^2 + 1| \Big]_{2}^{3}
I = \dfrac {1}{2} \Big [ (\log 10 - \log 5) \Big]
Final Answer: \boxed { I = \dfrac {1}{2} \Big ( \log 2 \Big) }
Question 14: \int_{0}^{1} \dfrac{2x+3}{5x^{2}+1}, dx
I = \int_{0}^{1} \dfrac{2x+3}{5x^{2}+1} \ dx
Let, 2x + 3 = A\cdot \dfrac {d(5x^2 + 1)}{dx} + B
2x + 3 = A\cdot 10x + B
Comparing coefficients: A = \frac {1}{5} \ \ B = 3
2x + 3 = \dfrac{1}{5}\cdot 10x + 3
I = \int_{0}^{1} \dfrac{\dfrac{1}{5}\cdot 10x + 3}{5x^{2}+1} \ dx
I = \int_{0}^{1} \dfrac{\dfrac{1}{5}\cdot 10x + 3}{5x^{2}+1} \ dx
I = \int_{0}^{1} \Big[ \dfrac{10x}{5 \cdot (5x^{2}+1)} + \dfrac{3}{5x^{2}+1} \Big] \ dx
I = \int_{0}^{1} \dfrac{10x}{5 \cdot (5x^{2}+1)} \ dx + \int_{0}^{1} \dfrac{3}{5x^{2}+1} \ dx
Let, I_1 = \int \dfrac{10x}{5 \cdot (5x^{2}+1)} \ dx
Let, 5x^2 + 1 = t \implies 10x = \dfrac{dt}{dx} \implies 10x \cdot dx = dt
I_1 = \dfrac{1}{5} \int \dfrac{dt}{t} \ dx
I_1 = \dfrac{1}{5} \cdot log t
Substituting back t,
I_1 = \dfrac{1}{5} \cdot log |5x^2+1|
Let, I_2 = \int \dfrac{3}{5x^{2}+1} \ dx
I_2 = 3 \cdot \int \dfrac{1}{(x \sqrt{5})^2 + 1^2} \ dx
I_2 = \dfrac {3}{\sqrt{5}} \cdot \tan^{-1} (x\sqrt{5})
Therefore I = \Big [\dfrac{1}{5} \cdot log |5x^2+1| \Big]_{0}^{1} + \Big [\dfrac {3}{\sqrt{5}} \cdot \tan^{-1} (x\sqrt{5}) \Big]_{0}^{1}
I = \dfrac{1}{5} \big[ log 6 - log 1 ] \Big] + \dfrac {3}{\sqrt{5}} \Big [ \tan^{-1} \sqrt{5} - \tan^{-1} 0 \Big]
I = \dfrac{1}{5} log 6 + \dfrac {3}{\sqrt{5}} \tan^{-1} \sqrt{5}
Final Answer: \boxed {\int_{0}^{1} \dfrac{2x+3}{5x^{2}+1} \ dx = \dfrac{1}{5} log 6 + \dfrac {3}{\sqrt{5}} \tan^{-1} \sqrt{5}}
Question 15: \int_{0}^{1} x e^{x^{2}} \ dx
Solutions:
Let, I = \int_{0}^{1} x e^{x^{2}} \ dx
Let, t = x^{2} \implies dt = 2xdx
\int x e^{x^{2}} \ dx = \tfrac{1}{2}\int e^{t} \ dt
\int x e^{x^{2}} \ dx = \tfrac{1}{2} e^{t}
Substituting back x
\int x e^{x^{2}} \ dx = \tfrac{1}{2} e^{x}
I = \tfrac{1}{2} \Big [ e^{x}]_{0}^{1}
I = \tfrac{1}{2} \Big [ e^{1} - e{0}]
I = \tfrac{1}{2} (e - 1)
Final Answer: \boxed{ \int_{0}^{1} x e^{x^{2}} \ dx = \frac{1}{2}(e-1)}
Question 16: \int_{1}^{2} \dfrac{5x^{2}}{x^{2}+4x+3} \ dx
Solutions:
Let, I = \int_{1}^{2} \dfrac{5x^{2}}{x^{2}+4x+3} \ dx
\dfrac{5x^{2}}{x^{2}+4x+3} = 5 - \dfrac{20x+15}{x^{2}+4x+3}
I = \int_{1}^{2} 5 - \frac{20x+15}{x^{2}+4x+3} \ dx
I = \int_{1}^{2} 5 \ dx - \int_{1}^{2} \frac{20x+15}{x^{2}+4x+3} \ dx
I = I_1 - I_2
Let, I_1 = \int_{1}^{2} 5 \ dx
I_1 = \Big[ 5x \Big]_{1}^{2} \ dx
I_1 = (10) - (5) = 5
I_2 = \int_{1}^{2} \frac{20x+15}{x^{2}+4x+3} \ dx
\frac{20x+15}{x^2+4x+3} = \frac{20x + 15}{(x+1)(x+3)}
\frac{20x+15}{x^2+4x+3} = \frac{A}{(x+1)} + \frac{B}{(x+3)}
\frac{20x+15}{x^2+4x+3} = \frac{A.(x+3)}{(x+1)} + \frac{B.(x+1)}{(x+3)}
20x+15 = A.(x+3) + B.(x+1)
Putting x = -1
-20 + 15 = A(2) + B(0)
-5 = A\cdot2
A = \frac{-5}{2}
Putting x = -3
-60 + 15 = A(0) + B(-2)
-45 = -2 \cdot B
B = \frac{45}{2}
\frac{20x+15}{x^2+4x+3} = \frac{-5}{2(x+1)} + \frac{45}{2(x+3)}
I_2 = \int_{1}^{2} \frac{-5}{2(x+1)} + \frac{45}{2(x+3)} \ dx
I_2 = \frac{-5}{2} \int_{1}^{2} \frac{1}{(x+1)} \ dx + \frac{45}{2} \int_{1}^{2} \frac{1}{(x+3)} \ dx
I_2 = \frac{-5}{2} \Big[ \log(x+1) \Big]_{1}^{2} + \frac{45}{2} \Big [ \log(x+3) \Big]_{1}^{2}
I_2 = \frac{-5}{2} \Big[ \log{3} - log{2} \Big] + \frac{45}{2} \Big [ \log{5} - \log{4} \Big]
I_2 = \frac{-5}{2} \log{\frac{3}{2}}+ \frac{45}{2} \log{\frac {5}{4}}
I_2 = \frac{5}{2} \big[ 9\log{\frac {5}{4}} - \log{\frac{3}{2}} \Big]
I = I_1 - I_2
I = 5 - \frac{5}{2} \big[ 9\log{\frac {5}{4}} - \log{\frac{3}{2}} \Big]
Final Answer: \boxed{ \int_{1}^{2} \dfrac{5x^{2}}{x^{2}+4x+3} \ dx = 5 - \frac{5}{2} \big[ 9\log{\frac {5}{4}} - \log{\frac{3}{2}} \Big] }
Question 17: \int_{0}^{\tfrac{\pi}{4}} \big(2\sec^{2}x + x^{3} + 2\big) \ dx
Let, I = \int_{0}^{\tfrac{\pi}{4}} \big(2\sec^{2}x + x^{3} + 2\big) \ dx
I = \int_{0}^{\tfrac{\pi}{4}} 2\sec^{2}x \ dx + \int_{0}^{\tfrac{\pi}{4}} x^{3} \ dx + \int_{0}^{\tfrac{\pi}{4}} 2 \ dx
I = \Big[ 2\tan x + \frac{x^4}{4} + 2x]_{0}^{\frac{\pi}{4}}
I = \Big[ 2\tan \frac{\pi}{4} + \frac{(\frac{\pi}{4})^4}{4} + 2\cdot\frac{\pi}{4} \Big] - \Big[ 2\tan 0 + \frac{0^4}{4} + 2\cdot0 \Big]
I = \Big[ 2\cdot1 + \frac{\pi^4}{1024} + \frac{\pi}{2} \Big] - \Big[ 0 + 0 + 0 \Big]
Final Answer: \boxed{ \int_{0}^{\tfrac{\pi}{4}} \big(2\sec^{2}x + x^{3} + 2\big) \ dx = 2 + \frac{\pi^4}{1024} + \frac{\pi}{2}}
Question 18: \int_{0}^{\pi} \big(\sin^{2}\tfrac{x}{2} - \cos^{2}\tfrac{x}{2}\big) \ dx
Solution:
I = \int_{0}^{\pi} \big(\sin^{2}\tfrac{x}{2} - \cos^{2}\tfrac{x}{2}\big) \ dx
I = \int_{0}^{\pi} \big( -\cos2x \big) \ dx
I = \int_{0}^{\pi} (-\cos 2x) \ dx
I = \Big[\frac{-\sin 2x}{2} \Big]_{0}^{\pi}
I = \Big[\frac{-\sin 2\pi}{2} \Big] - \Big[\frac{-\sin 0}{2} \Big]
I = 0
Final Answer: \boxed {\int_{0}^{\pi} \big(\sin^{2}\tfrac{x}{2} - \cos^{2}\tfrac{x}{2}\big) \ dx = 0 }
Question 19: \int_{0}^{2} \dfrac{6x+3}{x^{2}+4} \ dx
Solution:
I = \int_{0}^{2} \dfrac{6x+3}{x^{2}+4} \ dx
I = \int_{0}^{2} \dfrac{6x}{x^{2}+4} \ dx + \int_{0}^{2} \dfrac{3}{x^{2}+4} \ dx
I = \int_{0}^{2} 3\cdot\dfrac{2x}{x^{2}+4} \ dx + \int_{0}^{2} \dfrac{3}{x^{2}+4} \ dx
I = I_1 + I_2
I_1 = \int_{0}^{2} 3\cdot\dfrac{2x}{x^{2}+4} \ dx
let x^2 + 4 = t \implies 2x \cdot dx = dt
\int 3\cdot\dfrac{2x}{x^{2}+4} \ dx = \int \frac{3 dt}{t} \ dx
\int 3\cdot\dfrac{2x}{x^{2}+4} \ dx = 3 \cdot \log{t}
Substituting back t
\int 3\cdot\dfrac{2x}{x^{2}+4} \ dx = 3 \cdot \log(x^2+4)
I_1 = 3 \Big[ \log(x^2 + 4) \Big]_{0}^{2}
I_1 = 3 \Big[ \log{8} - \log{4} \Big]
I_1 = 3 \log{2}
I_2 = \int_{0}^{2} \dfrac{3}{x^{2}+4} \ dx
\int \dfrac{3}{x^{2}+4} \ dx = 3 \cdot \frac{1}{2} \tan^{-1} \frac{x}{2}
I_2 = 3 \Big[\frac{1}{2} \tan^{-1} \frac{x}{2} \Big]_{0}^{2}
I_2 = \frac{3}{2} \Big[\tan^{-1} \frac{2}{2} - \tan^{-1} \frac{0}{2} \Big]
I_2 = \frac{3}{2} \Big[\tan^{-1} 1 - \tan^{-1} 0 \Big]
I_2 = \frac{3}{2} \Big[\frac{\pi}{4} - 0 \Big]
I_2 = \frac{3 \pi}{8}
I = 3 \log{2} + \frac{3 \pi}{8}
Final Answer: \boxed{ \int_{0}^{2} \dfrac{6x+3}{x^{2}+4} \ dx = 3 \log{2} + \frac{3 \pi}{8} }
Question 20: \int_{0}^{1} \big(x e^{x} + \sin \tfrac{\pi x}{4}\big), dx
I = \int_{0}^{1} \big(x e^{x} + \sin \tfrac{\pi x}{4}\big) \ dx
\int x e^{x} \ dx = x e^{x} - e^{x}
\int \sin \tfrac{\pi x}{4} \ dx = -\tfrac{4}{\pi}\cos \tfrac{\pi x}{4}
\therefore I= \Big[x e^{x} - e^{x}\Big]_{0}^{1} + \Big[-\tfrac{4}{\pi}\cos \tfrac{\pi x}{4}\Big]_{0}^{1}
I = \Big[1\cdot e^{1} - e^{1}\Big] - \Big[0\cdot e^{0} - e^{0}\Big] + \Big[-\tfrac{4}{\pi}\cos \tfrac{\pi}{4}\Big] - \Big[-\tfrac{4}{\pi}\cos \tfrac{0}{4}\Big]
I = 1 -\frac{2\sqrt{2}}{\pi} + \frac{4}{\pi}
Final Answer: \boxed{\int_{0}^{1} \big(x e^{x} + \sin \tfrac{\pi x}{4}\big) \ dx = 1 + \frac{4}{\pi} - \frac{2\sqrt{2}}{\pi} }
Question 21: \int_{1}^{\sqrt{3}} \dfrac{dx}{1+x^{2}}
(A) \frac {\pi}{3}
(B) \frac {2\pi}{3}
(C) \frac {\pi}{6}
(D) \frac {\pi}{12}
Solution:
I = \int_{1}^{\sqrt{3}} \dfrac{dx}{1+x^{2}}
I = \Big[ \tan^{-1} x \Big]_{1}^{\sqrt{3}}
I = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1)
I = \frac{\pi}{3} - \frac{\pi}{4}
I = \frac{\pi}{12}
\boxed{ \int_{1}^{\sqrt{3}} \dfrac{dx}{1+x^{2}} = \dfrac{\pi}{12}}
Correct option: (D)
Question 22: \int_{0}^{\tfrac{2}{3}} \dfrac{dx}{4+9x^{2}}
(A) \frac{\pi}{6}
(B) \frac{\pi}{12}
(C) \frac{\pi}{24}
(D) \frac{\pi}{4}
Solution:
I = \int_{0}^{\tfrac{2}{3}} \dfrac{dx}{4+9x^{2}}
I = \frac{1}{9} \int_{0}^{\tfrac{2}{3}} \dfrac{dx}{ \frac{4}{9}+9x^{2}}
I = \frac{1}{9} \int_{0}^{\tfrac{2}{3}} \dfrac{dx}{ (\frac{2}{3})^2+ x^{2}}
I = \frac{1}{9} \Big[ \frac{3}{2} \tan^{-1} \frac{3x}{2} \Big]_{0}^{\frac{2}{3}}
I = \frac{1}{6} \Big[ \tan^{-1} {1} - \tan^{-1}{0} \Big]
I = \frac{1}{6} \Big[ \frac{\pi}{4} - 0 \Big]
I = \dfrac{\pi}{24}
\boxed{\int_{0}^{\tfrac{2}{3}} \dfrac{dx}{4+9x^{2}} = \dfrac{\pi}{24} }
Correct Option: (C)