Class 12 NCERT Maths – Chapter 3 (Matrices) – Exercise 3.1 Solutions


Question 1. In the matrix
A = \begin{bmatrix} 2 & 5 & -19 & 7 \\\\ 35 & -2 & \dfrac{5}{2} & 12 \\\\ \sqrt{3} & 1 & -5 & 17 \end{bmatrix}

write:
(i) The order of the matrix
(ii) The number of elements
(iii) Write the elements a_{13},\ a_{21},\ a_{33},\ a_{24},\ a_{23}

Solution:
(i) The order of the matrix is 3 \times 4 
(ii) The number of elements is 3 \times 4 = 12 
(iii) Elements: 
a_{13} = -19,\quad a_{21} = 35,\quad a_{33} = -5,\quad a_{24} = 12,\quad a_{23} = \dfrac{5}{2}

Question 2. If a matrix has 24 elements, what are the possible orders it can have? 
What, if it has 13 elements?

Solution:
If a matrix has 24 elements, we list all possible ordered pairs (m, n) such that m \times n = 24
(1,24),\ (2,12),\ (3,8),\ (4,6),\ (6,4),\ (8,3),\ (12,2),\ (24,1) 

If the matrix has 13 elements: 
Since 13 is a prime number, only possible orders are 1 \times 13\ \text{and}\ 13 \times 1

Question 3. If a matrix has 18 elements, what are the possible orders it can have? 
What, if it has 5 elements?

Solution:
If the matrix has 18 elements, we find all pairs (m, n) such that 
m \times n = 18

Possible orders: 
(1,18),\ (2,9),\ (3,6),\ (6,3),\ (9,2),\ (18,1)

If the matrix has 5 elements (and 5 is a prime number), possible orders are: 
(1,5)\ \text{and}\ (5,1)

Question 4. Construct a 2 \times 2 matrix A = [a_{ij}] whose elements are given by: 

(i) a_{ij} = \dfrac{(i + j)^2}{2} 
(ii) a_{ij} = \dfrac{i}{j} 
(iii) a_{ij} = \dfrac{(i + 2j)^2}{2}

Solution
(i)   A = \begin{bmatrix}  \dfrac{(1+1)^2}{2} & \dfrac{(1+2)^2}{2} \\\\  \dfrac{(2+1)^2}{2} & \dfrac{(2+2)^2}{2}  \end{bmatrix}  =  \begin{bmatrix}  2 & \dfrac{9}{2} \\\\  \dfrac{9}{2} & 8  \end{bmatrix} 

(ii)   A = \begin{bmatrix}  \dfrac{1}{1} & \dfrac{1}{2} \\\\  \dfrac{2}{1} & \dfrac{2}{2}  \end{bmatrix}  =  \begin{bmatrix}  1 & \dfrac{1}{2} \\\\  2 & 1  \end{bmatrix} 

(iii)   A = \begin{bmatrix}  \dfrac{(1 + 2)^2}{2} & \dfrac{(1 + 4)^2}{2} \\\\  \dfrac{(2 + 2)^2}{2} & \dfrac{(2 + 4)^2}{2}  \end{bmatrix}  =  \begin{bmatrix}  \dfrac{9}{2} & \dfrac{25}{2} \\\\  8 & 18  \end{bmatrix} 

Question 5. Construct a 3 \times 4 matrix, whose elements are given by: 

(i) a_{ij} = \dfrac{1}{2} \left| -3i + j \right| 
(ii) a_{ij} = 2i - j

Solution:
(i)   A = \begin{bmatrix}  \dfrac{1}{2}|-3(1)+1| & \dfrac{1}{2}|-3(1)+2| & \dfrac{1}{2}|-3(1)+3| & \dfrac{1}{2}|-3(1)+4| \\\\  \dfrac{1}{2}|-3(2)+1| & \dfrac{1}{2}|-3(2)+2| & \dfrac{1}{2}|-3(2)+3| & \dfrac{1}{2}|-3(2)+4| \\\\  \dfrac{1}{2}|-3(3)+1| & \dfrac{1}{2}|-3(3)+2| & \dfrac{1}{2}|-3(3)+3| & \dfrac{1}{2}|-3(3)+4|  \end{bmatrix}  =  \\\\ \begin{bmatrix}  1 & \dfrac{1}{2} & 0 & \dfrac{1}{2} \\\\  \dfrac{5}{2} & 2 & \dfrac{3}{2} & 1 \\\\  4 & \dfrac{7}{2} & 3 & \dfrac{5}{2}  \end{bmatrix} 

(ii)   A = \begin{bmatrix}  2(1) - 1 & 2(1) - 2 & 2(1) - 3 & 2(1) - 4 \\\\  2(2) - 1 & 2(2) - 2 & 2(2) - 3 & 2(2) - 4 \\\\  2(3) - 1 & 2(3) - 2 & 2(3) - 3 & 2(3) - 4  \end{bmatrix}  =  \begin{bmatrix}  1 & 0 & -1 & -2 \\  3 & 2 & 1 & 0 \\  5 & 4 & 3 & 2  \end{bmatrix} 

Question 6. Find the values of x, y, z from the following equations:

(i) \begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}
(ii) \begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}
(iii) \begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}

Solution: (i) Comparing corresponding elements of the matrices:

4 = y \Rightarrow y = 4

3 = z \Rightarrow z = 3

x = 1 (from the bottom-left elements)

(ii) Comparing matrices:

x + y = 6 \quad \text{(1)}

z + 5 = 5 \Rightarrow z = 0 \quad \text{(2)}

xy = 8 \quad \text{(3)}

From (1):
y = 6 - x

Now, substitute into (3):
x(6 - x) = 8 \\\\ x^2 - 6x + 8 = 0

Solving the quadratic:
x = 2 \quad and \quad x = 4

y = 6 - 2 = 4 \quad and \quad y = 6 - 4 =2

Therefore, possible solutions:
(x, y, z) = (2, 4, 0) \text{ or } (4, 2, 0)

(iii) Given:
x + y + z = 9 \quad \text{(i)}
x + z = 5 \quad \text{(ii)}
y + z = 7 \quad \text{(iii)}

From (i) and (ii):

(x + y + z) - (x + z) = 9 - 5 \\\\ \Rightarrow y = 4

Now using y in (iii): 4 + z = 7 \Rightarrow z = 3
Then from (ii): x = 5 - z = 2

Final solution: x = 2, y = 4, z = 3

Question 7. Find the value of a, b, c, and d from the equation:
\begin{bmatrix} a - b & 2a + c \\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}


Solution: Compare elements:

a - b = -1 \quad (1)
2a + c = 5 \quad (2)
2a - b = 0 \quad (3)
3c + d = 13 \quad (4)

From (1) and (3):

Subtract (1) from (3):

(2a - b) - (a - b) = 0 - (-1) \Rightarrow a = 1
Then
From (1): 1 - b = -1 \Rightarrow b = 2
From (2): 2(1) + c = 5 \Rightarrow c = 3
From (4): 3(3) + d = 13 \Rightarrow d = 4

Final values: a = 1, b = 2, c = 3, d = 4

Question 8. A = [a_{ij}]_{m \times n} is a square matrix, if:

(A) m < n  
(B) m > n  
(C) m = n  
(D) None of these

Solution: A square matrix is defined as a matrix with equal number of rows and columns.
So, the correct condition is: m = n
✅ Correct Option: (C)

Question 9. Which of the given values of x and y make the following pair of matrices equal?
\begin{bmatrix} 3x + 7 & 5 \\ y + 1 & 2 - 3x \end{bmatrix} = \begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}

Solution: Compare elements:

3x + 7 = 0 \quad (1)
\Rightarrow x = -\dfrac{7}{3}

y + 1 = 8 \quad (2)
\Rightarrow y = 7

y - 2 = 5 \quad (3)
\Rightarrow y = 7 \quad (OK)

2 - 3x = 4 \quad (4)
\Rightarrow x = -\dfrac{2}{3} \quad (Contradiction)

Equations (1) and (4) are inconsistent. Hence,
❌ No consistent values of x and y satisfy all conditions.

✅ Correct Option: (B) Not possible to find

Question 10. The number of all possible matrices of order 3 \times 3 with each entry 0 or 1 is:

(A) 27   (B) 18   (C) 81   (D) 512

Solution: Each element has 2 possibilities: 0 or 1

A 3 \times 3 matrix has 9 elements.
So total number of such matrices = 2^9 = 512

✅ Correct Option: (D) 512





Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top