Class 12 NCERT Maths – Chapter 7, Exercise 7.10 Solutions

Are you looking for NCERT Solutions for Class 12 Maths Integration Exercise 7.10? Then you have come to the right place.
This exercise covers questions based important properties of definite integrals that simplify evaluation of integrals in board exams.

Here, you’ll find stepwise solutions for Class 12, NCERT Maths Ex 7.10 explained in a clear, textbook style to help you score well in CBSE exams.
Before starting the exercise it is recommended that you go through the properties of definite integrals.

Question 1: Evaluate \int_{0}^{\frac{\pi}{2}} \cos^{2}x \ dx

Solution:
I = \int_{0}^{\frac{\pi}{2}} \cos^{2}x \ dx

I = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} \ dx

I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \ dx + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2x \ dx

I = \frac{1}{2} \cdot \frac{\pi}{2} + \frac{1}{2} \cdot \left[ \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{2}}

I = \frac{\pi}{4} + \frac{1}{4}(0 - 0)

I = \frac{\pi}{4}

Final Answer: \boxed{\int_{0}^{\frac{\pi}{2}} \cos^{2}x \ dx = \frac{\pi}{4}}


Question 2: Evaluate \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \ dx

Solution:
I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx with a = \frac{\pi}{2}:

I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin (\frac{\pi}{2} - x)}}{\sqrt{\sin (\frac{\pi}{2} - x)} + \sqrt{\cos (\frac{\pi}{2} - x)}} \ dx

I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \ dx

2I = \int_{0}^{\frac{\pi}{2}} 1 \ dx

2I = \Big [ x \Big]_{0}^{\frac{\pi}{2}}

2I = \dfrac{\pi}{2} - 0

2I = \dfrac{\pi}{2}

I = \frac{\pi}{4}

Final Answer: \boxed {\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \ dx = \frac{\pi}{4}}


Question 3: Evaluate \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3/2}x}{\sin^{3/2}x + \cos^{3/2}x} , dx

Solution:
Let I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3/2}x}{\sin^{3/2}x + \cos^{3/2}x} \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2}:

I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3/2} (\frac{\pi}{2} - x)}{\sin^{3/2} (\frac{\pi}{2} - x) + \cos^{3/2} (\frac{\pi}{2} - x)} \ dx

I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3/2}x}{\sin^{3/2}x + \cos^{3/2}x} \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3/2}x + \sin^{3/2}x}{\sin^{3/2}x + \cos^{3/2}x} \ dx

2I = \int_{0}^{\frac{\pi}{2}} 1 \ dx

2I = \Big[x \Big]_{0}^{\frac{\pi}{2}}

2I = \dfrac{\pi}{2}

I = \dfrac{\pi}{4}

Final Answer: \boxed{ \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3/2}x}{\sin^{3/2}x + \cos^{3/2}x} \ dx = \frac{\pi}{4}}


Question 4: Evaluate \int_{0}^{\frac{\pi}{2}} \frac{\cos^{5}x}{\sin^{5}x + \cos^{5}x} \ dx

Solution:
Let I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{5}x}{\sin^{5}x + \cos^{5}x} \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2}:

Let I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{5} (\frac{\pi}{2} - x)}{\sin^{5}(\frac{\pi}{2} - x) + \cos^{5}(\frac{\pi}{2} - x)} \ dx

I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{5}x}{\sin^{5}x + \cos^{5}x} \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{5}x + \cos^{5}x}{\sin^{5}x + \cos^{5}x} \ dx

2I = \int_{0}^{\frac{\pi}{2}} 1 / dx

2I = \Big[ x \Big]_{0}^{{\pi}{2}}

2I = \frac{\pi}{2}

I = \frac{\pi}{4}

Final Answer: \boxed {\int_{0}^{\frac{\pi}{2}} \frac{\cos^{5}x}{\sin^{5}x + \cos^{5}x} \ dx = \frac{\pi}{4} }


Question 5: Evaluate \int_{-5}^{5} |x+2| \ dx

Solution:
I = \int_{-5}^{5} |x+2| \ dx
Break at x = -2:

I = \int_{-5}^{-2} -(x+2) \ dx + \int_{-2}^{5} (x+2) \ dx

I = \int_{-2}^{-5} (x+2) \ dx + \int_{-2}^{5} (x+2) \ dx

I = \left[ \frac{x^{2}}{2} + 2x \right]_{-2}^{-5} + \left[ \frac{x^{2}}{2} + 2x \right]_{-2}^{5}

I = \left[ \frac{25}{2} - 10 \right] - \left[ 2 - 4 \right] + \left[ \frac{25}{2} + 10 \right] - \left[ 2 - 4 \right]

I = \frac{25}{2} - 10 - 2 + 4 + \frac{25}{2} + 10 - 2 + 4

I = \frac{50}{2} + 2 + 2

I = 25 + 4

I = 29

Final Answer: \boxed{ \int_{-5}^{5} |x+2| \ dx = 29}


Question 6: Evaluate \int_{2}^{8} |x-5| \ dx

Solution:
Let, I = \int_{2}^{8} |x-5| \ dx

Break at x=5:
I = \int_{2}^{5} -(x-5) \ dx + \int_{5}^{8} (x-5) \ dx

I = \int_{2}^{5} (5-x) \ dx + \int_{5}^{8} (x-5) \ dx


I = \left[ 5x - \frac{x^{2}}{2} \right]_{2}^{5} + \left[ \frac{x^{2}}{2} - 5x \right]_{5}^{8}

I = \left((25 - \frac{25}{2}) - (10 - 2) \right) + \left((32 - 40) - (\frac{25}{2} - 25) \right)

I = 25 - \frac{25}{2} - 8 - 8 - \frac{25}{2} + 25

I = 50 - 25 - 16

I = 9

Final Answer: \boxed{ \int_{2}^{8} |x-5| \ dx = 9 }


Question 7: Evaluate \int_{0}^{1} x(1-x)^{n} \ dx

Solution:
Let I = \int_{0}^{1} x(1-x)^{n} dx.

Put t = 1-x \implies dx = -dt.
limit x = 0 \implies t = 1 and x = 1 \implies t = 0

I = \int_{1}^{0} (1-t)t^{n}(-dt)

I = \int_{0}^{1} (1-t)t^{n} dt

So,
I = \int_{0}^{1} t^{n} dt - \int_{0}^{1} t^{n+1} dt

I = \Big[\frac{t^{n+1}}{n+1} \Big]_{0}^{1} - \Big[\frac{t^{n+2}}{n+2} \Big]_{0}^{1}

I = \frac{1}{n+1} - \frac{1}{n+2}

I = \frac{1}{(n+1)(n+2)}

Final Answer: \boxed{\int_{0}^{1} x(1-x)^{n} dx = \frac{1}{(n+1)(n+2)} }


Question 8: Evaluate \int_{0}^{\pi/4} \log(1+\tan x) \ dx

Solution:
Let I = \int_{0}^{\pi/4} \log(1+\tan x) \ dx.

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{4}:

I = \int_{0}^{\pi/4} \log(1+\tan(\pi/4 - x)) dx

I = \int_{0}^{\pi/4} \log\left(1+\frac{1-\tan x}{1+\tan x}\right) dx

I = \int_{0}^{\pi/4} \log\left(\frac{2}{1+\tan x}\right) dx

I = \int_{0}^{\pi/4} \log 2 \ dx - \int_{0}^{\pi/4} \log(1+\tan x) \ dx

2I = \frac{\pi}{4}\log 2

I = \frac{\pi}{8}\log 2

Final Answer: \boxed{ \int_{0}^{\pi/4} \log(1+\tan x) \ dx = \frac{\pi}{8}\log 2 }


Question 9: Evaluate \int_{0}^{2} x\sqrt{2-x} \ dx

Solution:
I = \int_{0}^{2} x\sqrt{2-x} \ dx

Let t = 2-x \implies dx = -dt

When x=0, t=2; when x=2, t=0.

I = \int_{2}^{0} (2-t)\sqrt{t}(-dt)

I= \int_{0}^{2} (2-t)\sqrt{t} \ dt

I = \int_{0}^{2} 2\sqrt{t} dt - \int_{0}^{2} t^{3/2} dt

I = \big[ \frac{2 \cdot 2 \cdot t^{3/2}}{3} \big]_{0}^{2} - \Big[ \frac{2 \cdot t^{5/2}}{5} \big]_{0}^{2}

I = \frac{4}{3} \cdot 2^{3/2} - \frac{2}{5} \cdot 2^{5/2}

I = \frac{8\sqrt{2}}{3} - \frac{8\sqrt{2}}{5}

I = \frac{40\sqrt{2} - 24\sqrt{2}}{15}

I = \boxed{\frac{16\sqrt{2}}{15}}

Final Answer: \boxed{ \int_{0}^{2} x\sqrt{2-x} \ dx = \frac{16\sqrt{2}}{15}}


Question 10: Evaluate \int_{0}^{\pi/2} (2\log \sin x - \log \sin 2x) \ dx

Solution:
I = \int_{0}^{\pi/2} 2\log \sin x \ dx - \int_{0}^{\pi/2} \log \sin 2x \ dx

I = \int_{0}^{\pi/2} 2\log \sin x \ dx - \int_{0}^{\pi/2} \log (2\sin x \cos x) \ dx

I = \int_{0}^{\pi/2} 2\log \sin x \ dx - ( \int_{0}^{\pi/2} \log (2) \ dx + \int_{0}^{\pi/2} \log \sin x \ dx + \int_{0}^{\pi/2} \log \cos x \ dx )

I = \int_{0}^{\pi/2} 2\log \sin x \ dx - \int_{0}^{\pi/2} \log (2) \ dx - \int_{0}^{\pi/2} \log \sin x \ dx - \int_{0}^{\pi/2} \log \cos x \ dx

In the last integral Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2}:

I = \int_{0}^{\pi/2} 2\log \sin x \ dx - \int_{0}^{\pi/2} \log (2) \ dx - \int_{0}^{\pi/2} \log \sin x \ dx - \int_{0}^{\pi/2} \log \cos (x - \frac{\pi}{2}) \ dx

I = \int_{0}^{\pi/2} 2\log \sin x \ dx - \int_{0}^{\pi/2} \log (2) \ dx - \int_{0}^{\pi/2} \log \sin x \ dx - \int_{0}^{\pi/2} \log \sin x \ dx

I = - \int_{0}^{\pi/2} \log (2) \ dx

I = - \big[x \cdot \log (2) \big]_{0}^{\pi/2}

I = - \log(2) \big[\frac{\pi}{2} - 0]

I = - \dfrac{\pi}{2} \log(2)

Final Answer: \boxed{\int_{0}^{\pi/2} (2\log \sin x - \log \sin 2x) \ dx = -\frac{\pi}{2} \log 2}


Question 11: Evaluate \int_{-\pi/2}^{\pi/2} \sin^{2}x \ dx

Solution:
Let I = \int_{-\pi/2}^{\pi/2} \sin^{2}x \ dx

Since, \sin^{2}x \text{ is even, }

I = 2\int_{0}^{\pi/2}\sin^{2}x \ dx

Since, \sin^{2}x = \frac{1+\cos 2x}{2}

I = 2\int_{0}^{\pi/2} \frac{1+\cos 2x}{2} \ dx

I = 2\left[\frac{1}{2}\int_{0}^{\pi/2}1 \ dx + \frac{1}{2}\int_{0}^{\pi/2}\cos 2x \ dx\right]

I =\int_{0}^{\pi/2}1 \ dx + \frac{1}{2}\int_{0}^{\pi/2}\cos 2x \ dx

I = \big[ x \big]_{0}^{\pi/2} + \big[ \frac{\sin 2x}{2} \big]_{0}^{\pi/2}

I = \big[ \frac{\pi}{2} - 0 \big] + \big[ \frac{\sin {\pi} - \sin {0} }{2} \big]

I = \frac{\pi}{2}

Final Answer: \boxed{ \int_{-\pi/2}^{\pi/2} \sin^{2}x \ dx = \frac{\pi}{2}}


Question 12: Evaluate \int_{0}^{\pi}\frac{x}{1+\sin x},dx

Solution:
I = \int_{0}^{\pi}\frac{x}{1+\sin x} dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \pi:

I = \int_{0}^{\pi}\frac{\pi-x}{1+\sin (\pi - x)} \ dx

I = \int_{0}^{\pi}\frac{\pi-x}{1+\sin x} \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{\pi}\frac{x}{1+\sin x} + \frac{\pi-x}{1+\sin x} dx

2I = \int_{0}^{\pi}\frac{\pi}{1+\sin x} \ dx

2I = \pi\int_{0}^{\pi}\frac{1}{1+\sin x} \ dx

Now, \frac{1}{1+\sin x} = \frac{1-\sin x}{\cos^{2}x} = \sec^{2}x - \sec x \tan x


2I = \pi \int_{0}^{\pi}\sec^{2}x - \sec x \tan x \ dx

2I = \pi \bigl(\tan x - \sec x\bigr)_{0}^{\pi}

2I = \pi \big[ \bigl(\tan \pi - \sec \pi \bigr) - \bigl(\tan 0 - \sec 0 \bigr) \big]

2I = \pi \big[ \bigl( 0 + 1 \bigr) - \bigl(0 - 1 \bigr) \big]

2I = 2 \pi

I = \pi

Final Answer: \boxed { \int_{0}^{\pi}\frac{x}{1+\sin x} dx = \pi }


Question 13: Evaluate \int_{-\pi/2}^{\pi/2} \sin^{7}x \ dx

Solution:
\sin^{7}x is an odd function.

We know: P_5: \int_{-a}^{a} f(x) \ dx = 0, if f is an odd function.
i.e. Integral of odd function over symmetric limits is zero.

Final Answer \boxed{\int_{-\pi/2}^{\pi/2} \sin^{7}x = 0}


Question 14: Evaluate \int_{0}^{2\pi} \cos^{5}x \ dx

Solution:
I = \int_{0}^{2\pi} \cos^{5}x \ dx

I = \int_{0}^{2\pi} \cos^{4}x \cdot \cos x \ dx

I = \int_{0}^{2\pi} (\cos^{2}x)^2 \cdot \cos x \ dx

I = \int_{0}^{2\pi} (1 - \sin^{2}x)^2 \cdot \cos x \ dx

Let \sin x = t \implies \cos x = \frac{dt}{dx}
when x = 0, t = 0 , when x = 2\pi, t = 0

I = \int_{0}^{0} (1 - t^2)^2 \ dt

I = 0

Final Answer: \boxed{\int_{0}^{2\pi} \cos^{5}x \ dx = 0}


Question 15: Evaluate \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \ dx

Solution:
I = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \ dx

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2}:

I = \int_{0}^{\pi/2} \frac{\sin (\frac{\pi}{2} - x) - \cos (\frac{\pi}{2} - x)}{1 + \sin (\frac{\pi}{2} - x) \cos (\frac{\pi}{2} - x) } \ dx

I = \int_{0}^{\pi/2} \frac{\cos x - \sin x}{1 + \cos x \sin x \ } dx

I = \int_{0}^{\pi/2} - \frac{\sin x - \cos x}{1 + \sin x \cos x \ } dx

So, I = -I

2I = 0

I = 0

Final Answer: \boxed{ \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \ dx = 0 }


Question 16: Evaluate \int_{0}^{\pi} \log(1+\cos x) \ dx

Solution:
I = \int_{0}^{\pi} \log(1+\cos x) \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \pi :

I = \int_{0}^{\pi} \log(1+\cos (\pi - x)) \ dx

I = \int_{0}^{\pi} \log(1-\cos x) \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{\pi} \log(1-\cos^2 x) \ dx

2I = \int_{0}^{\pi} \log(\sin^2 x) \ dx

2I = 2 \cdot \int_{0}^{\pi} \log(\sin x) \ dx

I = \int_{0}^{\pi} \log(\sin x) \ dx

Using Property P₆: \int_{0}^{2a} f(x) \ dx = 2 \int_{0}^{a} f(x) \ dx, \ \ \ \ \text{if } f(2a-x) = f(x)

I = 2 \cdot \int_{0}^{\pi/2} \log(\sin x) \ dx … (3)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2} :

I = 2 \cdot \int_{0}^{\pi/2} \log(\sin (\frac{\pi}{2} - x)) \ dx

I = 2 \cdot \int_{0}^{\pi/2} \log(\cos x) \ dx … (4)

Adding (3) and (4)

2I = 2 \big[ \int_{0}^{\pi/2} \log(\sin x) \ dx + \int_{0}^{\pi/2} \log(\cos x) \ dx \big]

2I = 2 \big[ \int_{0}^{\pi/2} \log(\sin x \cos x ) \ dx \big]

I = \int_{0}^{\pi/2} \log(\sin x \cos x ) \ dx

I = \int_{0}^{\pi/2} \log(\frac{2}{2}\sin x \cos x ) \ dx

I = \int_{0}^{\pi/2} \log (\sin{2x}) - \log{2} \ dx

I = \int_{0}^{\pi/2} \log (\sin{2x}) \ dx - \int_{0}^{\pi/2} \log{2} \ dx

For the 1st integral let,
2x = t \implies 2dx = dt \implies dx = \frac{dt}{2}
when, x = 0, t = 0 when, x = \frac{\pi}{2}, t = \pi

I = \frac{1}{2}\int_{0}^{\pi} \log (\sin{t}) \ dt - \int_{0}^{\pi/2} \log{2} \ dx

Using Property P₀: \int_a^b f(t),dt = \int_a^b f(x),dx

I = \frac{1}{2}\int_{0}^{\pi} \log (\sin{x}) \ dx - \int_{0}^{\pi/2} \log{2} \ dx

I = \frac{1}{2} \cdot I - \int_{0}^{\pi/2} \log{2} \ dx

\frac{1}{2} \cdot I = - \int_{0}^{\pi/2} \log{2} \ dx

\frac{1}{2} \cdot I = - \log{2} \big[ x \big]_{0}^{\pi/2}

\frac{1}{2} \cdot I = - \log{2} \big[ \frac{\pi}{2} - 0 \big]

\frac{1}{2} \cdot I = - \log{2} \frac{\pi}{2}

I = - \pi \log{2}

Final Answer: \boxed { \int_{0}^{\pi} \log(1+\cos x) \ dx = - \pi \log{2}}


Question 17: Evaluate \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} \ dx

Solution:
I = \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = a:

I = \int_{0}^{a} \frac{\sqrt{a- x}}{\sqrt{a - x}+\sqrt{a- (a- x}} \ dx

I = \int_{0}^{a} \frac{\sqrt{a- x}}{\sqrt{a - x}+\sqrt{x}} \ dx … (2)

Adding (1) and (2)

2I = \int_{0}^{a}1 \ dx

2I = \big[ x \big]_{0}^{a}

2I = a

I = \frac{a}{2}

Final Answer: \boxed{\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} \ dx = \frac{a}{2} }


Question 18: Evaluate \int_{0}^{4} |x-1| \ dx

Solution:
I = \int_{0}^{4} |x-1| \ dx

I = \int_{0}^{1}(1-x) \ dx + \int_{1}^{4}(x-1) \ dx

I = \left[x-\tfrac{x^{2}}{2}\right]_{0}^{1} + \left[\tfrac{x^{2}}{2}-x\right]_{1}^{4}

I = \tfrac{1}{2} + \tfrac{9}{2}

I = 5

Final Answer: \boxed{ \int_{0}^{4} |x-1| \ dx = 5}


Question 19: Show that \int_{0}^{a} f(x)g(x),dx = 2\int_{0}^{a} f(x),dx, if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4.

Solution:
I = \int_{0}^{a} f(x)g(x) \ dx … (1)

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = a:

I = \int_{0}^{a} f(a-x)g(a-x) \ dx

Given: f(x)=f(a-x)

I = \int_{0}^{a} f(x)g(a-x) \ dx … (2)

Adding (1) and (2)
2I = \int_{0}^{a} f(x)\big(g(x)+g(a-x)\big) \ dx

Given: g(x)+g(a-x)=4

2I = \int_{0}^{a} f(x)\cdot 4 \ dx

2I = 4\int_{0}^{a} f(x),dx

I = 2\int_{0}^{a} f(x),dx

Hence Proved: \boxed{\int_{0}^{a} f(x)g(x) \ dx = 2\int_{0}^{a} f(x) \ dx}


Question 20: Evaluate \int_{-\pi/2}^{\pi/2}(x^{3}+x\cos x+\tan^{5}x+1) \ dx

(A) 0

(B) 2

(C) \pi

(D) 1

Solution:
I = \int_{-\pi/2}^{\pi/2}(x^{3}+x\cos x+\tan^{5}x+1) \ dx

I = \int_{-\pi/2}^{\pi/2} x^{3} \ dx + \int_{-\pi/2}^{\pi/2} x\cos x \ dx + \int_{-\pi/2}^{\pi/2}\tan^{5}x \ dx + \int_{-\pi/2}^{\pi/2} 1 \ dx

x^3 , x\cos x \text{and} \tan^{5}x are all functions

We know: P_5: \int_{-a}^{a} f(x) \ dx = 0, if f is an odd function.

Odd parts vanish:

\int_{-\pi/2}^{\pi/2}x^{3} \ dx = 0,

\int_{-\pi/2}^{\pi/2}x\cos x \ dx = 0,

\int_{-\pi/2}^{\pi/2}\tan^{5}x \ dx = 0

Only constant remains:

I = 0 + 0 + 0 + \int_{-\pi/2}^{\pi/2}1 \ dx

I = \big[ x \big]_{-\pi/2}^{\pi/2}

I = \frac{\pi}{2} - \frac{-\pi}{2}

I = \pi

\boxed{ \int_{-\pi/2}^{\pi/2}(x^{3}+x\cos x+\tan^{5}x+1) \ dx = \pi}

Correct Option: (C)


Question 21: Evaluate \int_{0}^{\pi/2}\log\left(\frac{4+3\sin x}{4+3\cos x}\right) \ dx

(A) 0

(B) 2

(C) \pi

(D) 1

Solution:
I = \int_{0}^{\pi/2}\log\left(\frac{4+3\sin x}{4+3\cos x}\right) \ dx

Using property P_{4}: \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx, with a = \frac{\pi}{2}:

I = \int_{0}^{\pi/2}\log\left(\frac{4+3\sin (\tfrac{\pi}{2} - x)}{4+3\cos (\tfrac{\pi}{2} - x)}\right) \ dx

I = \int_{0}^{\pi/2}\log\left(\frac{4+3\cos x}{4+3\sin x}\right) \ dx

I = - \int_{0}^{\pi/2}\log\left(\frac{4+3\sin x}{4+3\cos x}\right) \ dx


I = -I

2I = 0

I = 0

\boxed{\int_{0}^{\pi/2}\log\left(\frac{4+3\sin x}{4+3\cos x}\right) \ dx = 0}

Correct Option: (A)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top