Complete Trigonometric Formulae (Class 11)

Trigonometry has a wide set of identities that simplify calculations and problem-solving. Here are the most important formulae, grouped by type, for your reference.


1. Trigonometric Functions of Sum and Difference of Two Angles

\sin(A + B) = \sin A \cos B + \cos A \sin B

\sin(A - B) = \sin A \cos B - \cos A \sin B

\cos(A + B) = \cos A \cos B - \sin A \sin B

\cos(A - B) = \cos A \cos B + \sin A \sin B

\tan(A + B) = \frac{ \tan A + \tan B }{ 1 - \tan A \tan B }

\tan(A - B) = \frac{ \tan A - \tan B }{ 1 + \tan A \tan B }

\cot(A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}

\cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}


2. Product to Sum (or Product to Series) Formula

2\sin A \sin B = \cos(A - B) - \cos(A + B)

2\cos A \cos B = \cos(A + B) + \cos(A - B)

2\sin A \cos B = \sin(A + B) + \sin(A - B)


3. Sum to Product (or Series to Product) Formulas

\sin C + \sin D = 2 \sin\left( \frac{C + D}{2} \right) \cos\left( \frac{C - D}{2} \right)

\sin C - \sin D = 2 \cos\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)

\cos C + \cos D = 2 \cos\left( \frac{C + D}{2} \right) \cos\left( \frac{C - D}{2} \right)

\cos C - \cos D = -2 \sin\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)


4. Double Angle Formulas

\sin(2\theta) = 2 \sin\theta \cos\theta

\sin(2\theta) = \frac{2\tan\theta}{1 + \tan^2\theta}

\cos(2\theta) = \cos^2\theta - \sin^2\theta

\cos(2\theta) = 2\cos^2\theta - 1

\cos(2\theta) = 1 - 2\sin^2\theta

\cos(2\theta) = \frac{1 - \tan^2\theta}{1 + \tan^2\theta}

\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}


5. Triple Angle Formulas

\sin(3\theta) = 3\sin\theta - 4\sin^3\theta

\cos(3\theta) = 4\cos^3\theta - 3\cos\theta

\tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}


6. Other Commonly Used Trigonometric Identities

Basic Pythagorean Identities:

\sin^2\theta + \cos^2\theta = 1

1 + \tan^2\theta = \sec^2\theta

1 + \cot^2\theta = \csc^2\theta

Negative Angle Formulas:

\sin(-\theta) = -\sin\theta

\cos(-\theta) = \cos\theta

\tan(-\theta) = -\tan\theta

Co-function Identities:

\sin\left(90^\circ - \theta\right) = \cos\theta

\cos\left(90^\circ - \theta\right) = \sin\theta

\tan\left(90^\circ - \theta\right) = \cot\theta


Summary Table

CategoryFormula
Sine of Sum\sin(A+B) = \sin A \cos B + \cos A \sin B
Sine of Difference\sin(A-B) = \sin A \cos B - \cos A \sin B
Cosine of Sum\cos(A+B) = \cos A \cos B - \sin A \sin B
Cosine of Diff.\cos(A-B) = \cos A \cos B + \sin A \sin B
Tan of Sum\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
Tan of Diff.\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}
Cot of Sum \cot(A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}
Cot of Diff \cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}
Product to Sum 12\sin A \sin B = \cos(A-B) - \cos(A+B)
Product to Sum 22\cos A \cos B = \cos(A+B) + \cos(A-B)
Product to Sum 32\sin A \cos B = \sin(A+B) + \sin(A-B)
Sum to Product 1\sin C + \sin D = 2 \sin\left( \frac{C + D}{2} \right) \cos\left( \frac{C - D}{2} \right)
Sum to Product 2\sin C - \sin D = 2 \cos\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)
Sum to Product 3\cos C + \cos D = 2 \cos\left( \frac{C + D}{2} \right) \cos\left( \frac{C - D}{2} \right)
Sum to Product 4\cos C - \cos D = -2 \sin\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)
Double Angle 1\sin(2\theta) = 2\sin\theta\cos\theta
Double Angle 2 \sin(2\theta) = \frac{2\tan\theta}{1 + \tan^2\theta}
Double Angle 3\cos(2\theta) = \cos^2\theta - \sin^2\theta
Double Angle 4\cos(2\theta) = 2\cos^2\theta - 1
Double Angle 5\cos(2\theta) = 1 - 2\sin^2\theta
Double Angle 6 \cos(2\theta) = \frac{1 - \tan^2\theta}{1 + \tan^2\theta}
Double Angle 7\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}
Triple Angle 1\sin(3\theta) = 3\sin\theta - 4\sin^3\theta
Triple Angle 2\cos(3\theta) = 4\cos^3\theta - 3\cos\theta
Triple Angle 3\tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}
Pythagorean 1\sin^2\theta + \cos^2\theta = 1
Pythagorean 21 + \tan^2\theta = \sec^2\theta
Pythagorean 31 + \cot^2\theta = \csc^2\theta
Negative Angle 1\sin(-\theta) = -\sin\theta
Negative Angle 2\cos(-\theta) = \cos\theta
Negative Angle 3\tan(-\theta) = -\tan\theta
Co-function 1\sin(90^\circ - \theta) = \cos\theta
Co-function 2\cos(90^\circ - \theta) = \sin\theta
Co-function 3\tan(90^\circ - \theta) = \cot\theta

Tip:
It is highly recommended to practice these formulae regularly, as they will make trigonometry questions much faster and easier to solve.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top