This exercise is based on formulas for integration, before you start the exercise it is advised that you go through the formulas from the following link. Important integration formulas
Question 1: Evaluate \int_{0}^{1} \dfrac{x}{x^{2}+1} \ dx
Solution:
I = \int_{0}^{1} \dfrac{x}{x^{2}+1} \ dx
Let t = x^{2} + 1 \implies dt = 2x dx
So, x dx = \dfrac{dt}{2}.
Limits: when x=0 \implies t=1, when x=1 \implies t=2.
I = \int_{1}^{2} \dfrac{1}{t} \cdot \dfrac{dt}{2}
I = \dfrac{1}{2} \int_{1}^{2} \dfrac{1}{t} \ dt
I = \dfrac{1}{2} [\ln t]_{1}^{2}
I = \dfrac{1}{2} [\ln 2 - \ln 1]
I = \dfrac{1}{2} \ln 2
Final Answer: \boxed{\int_{0}^{1} \dfrac{x}{x^{2}+1} \ dx = \dfrac{1}{2} \ln 2}
Question 2: Evaluate \int_{0}^{\pi/2} \sqrt{\sin \phi} \ \cos^{5}\phi \ d\phi
Solution:
I = \int_{0}^{\pi/2} \sqrt{\sin \phi}, \cos^{5}\phi \ d\phi
Let t = \sin \phi \implies dt = \cos \phi \ d\phi.
So,
\cos^{5}\phi \ d\phi = \cos^{4}\phi \cdot \cos\phi \ d\phi = (1 - \sin^{2}\phi)^{2} \ dt = (1 - t^{2})^{2} \ dt.
Limits: when \phi = 0 \implies t=0, when \phi = \dfrac{\pi}{2} \implies t=1.
I = \int_{0}^{\pi/2} \sqrt{\sin \phi} \cos^{5}\phi \ d\phi
I = \int_{0}^{1} \sqrt{t},(1 - t^{2})^{2} \ dt
I = \int_{0}^{1} (t^{1/2} - 2t^{5/2} + t^{9/2}) \ dt
Now integrate term by term:
I = \left[\dfrac{2}{3}t^{3/2} - \dfrac{4}{7}t^{7/2} + \dfrac{2}{11}t^{11/2}\right]_{0}^{1}
I = \dfrac{2}{3} - \dfrac{4}{7} + \dfrac{2}{11}
LCM (3,7,11) = 231
I = \dfrac{154 - 132 + 42}{231} = \dfrac{64}{231}
Final Answer: \boxed{\int_{0}^{\pi/2} \sqrt{\sin \phi} \ \cos^{5}\phi \ d\phi = \dfrac{64}{231}}
Question 3: Evaluate \int_{0}^{1} \sin^{-1}\left(\dfrac{2x}{1+x^{2}}\right) dx
Solution:
I = \int_{0}^{1} \sin^{-1}\left(\dfrac{2x}{1+x^{2}}\right) dx
Use substitution x = \tan \theta \implies dx = \sec^{2}\theta d\theta
Limits: when x = 0 \implies \theta =0, when x = 1 \implies \theta=\frac{\pi}{4}.
Then, \dfrac{2x}{1+x^{2}} = \dfrac{2\tan\theta}{1+\tan^{2}\theta} = \sin 2\theta
So integral becomes:
I = \int_{0}^{\pi/4} \sin^{-1}(\sin 2\theta) \ \sec^{2}\theta d\theta
Since 0 \leq 2\theta \leq \pi/2, we get \sin^{-1}(\sin 2\theta) = 2\theta.
So,
I = \int_{0}^{\pi/4} 2\theta \sec^{2}\theta \ d\theta.
Use integration by parts:
Let u = 2\theta, \ v = \sec^{2}\theta.
Then du = 2, d\theta, \int v \ d\theta = \tan \theta.
I = [2\theta \cdot \tan\theta]_{0}^{\pi/4} - \int_{0}^{\pi/4} 2 \tan \theta, d\theta
I = [2\theta \cdot \tan\theta]_{0}^{\pi/4} - 2[\ln(\sec \theta)]_{0}^{\pi/4}
I = \Big(\frac{\pi}{2} \cdot 1\Big) - 2 \Big [\ln(\sec \frac{\pi}{4}) - \ln(\sec 0) \Big]
I = \dfrac{\pi}{2} - 2\left(\ln\left(\sqrt{2}\right) + 0\right)
I = \dfrac{\pi}{2} - 2\ln \sqrt{2}
I = \dfrac{\pi}{2} - \ln 2
Final Answer: \boxed{\int_{0}^{1} \sin^{-1}\left(\dfrac{2x}{1+x^{2}}\right) dx = \dfrac{\pi}{2} - \ln 2}
Question 4: Evaluate \int_{0}^{2} x \sqrt{x+2} \ dx
Solution:
I = \int_{0}^{2} x \sqrt{x+2} \ dx
Let t = x+2 \implies dt = dx, and x = t-2
Limits: when x=0 \implies t=2, when x=2 \implies t=4
I = \int_{2}^{4} (t-2)\sqrt{t} \ dt
I = \int_{2}^{4} (t^{3/2} - 2t^{1/2}), dt
I = \left[\dfrac{2}{5}t^{5/2} - \dfrac{4}{3}t^{3/2}\right]_{2}^{4}
At t=4: \dfrac{2}{5}(32) - \dfrac{4}{3}(8) = \dfrac{64}{5} - \dfrac{32}{3}
At t=2: \dfrac{2}{5}(2^{5/2}) - \dfrac{4}{3}(2^{3/2}) = \dfrac{2}{5}(4\sqrt{2}) - \dfrac{4}{3}(2\sqrt{2}) = \dfrac{8\sqrt{2}}{5} - \dfrac{8\sqrt{2}}{3}
So, I = \left(\dfrac{64}{5} - \dfrac{32}{3}\right) - \left(\dfrac{8\sqrt{2}}{5} - \dfrac{8\sqrt{2}}{3}\right)
I = \dfrac{192 - 160}{15} - \dfrac{24\sqrt{2} - 40\sqrt{2}}{15}
I = \dfrac{32}{15} + \dfrac{16\sqrt{2}}{15}
Final Answer: \boxed{\int_{0}^{2} x \sqrt{x+2} \ dx = \dfrac{16\sqrt{2}}{15} \Big( \sqrt{2} + 1\Big)}
Question 5: Evaluate \int_{0}^{\pi/2} \dfrac{\sin x}{1 + \cos^{2}x} \ dx
Solution:
I = \int_{0}^{\pi/2} \dfrac{\sin x}{1 + \cos^{2}x} \ dx
Let t = \cos x \implies dt = -\sin x, dx.
Limits: when x=0 \implies t=1, when x=\pi/2 \implies t=0.
I = \int_{0}^{\pi/2} \dfrac{\sin x}{1 + \cos^{2}x} \ dx
I = \int_{1}^{0} \dfrac{-dt}{1+t^{2}}
I = \int_{0}^{1} \dfrac{dt}{1+t^{2}}
I = [\tan^{-1} t]_{0}^{1}
I = \dfrac{\pi}{4} - 0
Final Answer: \boxed{\int_{0}^{\pi/2} \dfrac{\sin x}{1 + \cos^{2}x} \ dx = \dfrac{\pi}{4}}
Question 6: Evaluate \int_{0}^{2}\dfrac{dx}{x+4-x^{2}}
Solution:
I = \int_{0}^{2} \dfrac{dx}{x+4-x^{2}}
I = -\int_{0}^{2} \dfrac{dx}{x^{2}-x-4}
Completing the square:
x^{2}-x-4 = (x-\tfrac{1}{2})^{2}-\left(\tfrac{\sqrt{17}}{2}\right)^{2}
So,
I = -\int_{0}^{2} \dfrac{dx}{(x-\tfrac{1}{2})^{2}-\left(\tfrac{\sqrt{17}}{2}\right)^{2}}
Using standard formula
I = -\dfrac{1}{2 \tfrac{\sqrt{17}}{2}} \left[\ln \left|\dfrac{x-\tfrac{1}{2}-\tfrac{\sqrt{17}}{2}}{x-\tfrac{1}{2}+\tfrac{\sqrt{17}}{2}}\right|\right]_{0}^{2}
I = -\dfrac{1}{2 \tfrac{\sqrt{17}}{2}} \left[\ln \left|\dfrac{x-\tfrac{1}{2}-\tfrac{\sqrt{17}}{2}}{x-\tfrac{1}{2}+\tfrac{\sqrt{17}}{2}}\right|\right]_{0}^{2}
I = - \dfrac{1}{\sqrt{17}} \Big( \left[\ln \left|\dfrac{2-\tfrac{1}{2}-\tfrac{\sqrt{17}}{2}}{2-\tfrac{1}{2}+\tfrac{\sqrt{17}}{2}}\right|\right] - \left[\ln \left|\dfrac{0-\tfrac{1}{2}-\tfrac{\sqrt{17}}{2}}{0-\tfrac{1}{2}+\tfrac{\sqrt{17}}{2}}\right|\right] \big)
I = - \dfrac{1}{\sqrt{17}} \Big( \left[\ln \left|\dfrac{3 - \sqrt{17}}{3+ \sqrt{17}} \right|\right] - \left[\ln \left|\dfrac{-1-\sqrt{17}}{-1+\sqrt{17}}\right|\right] \big)
I = - \dfrac{1}{\sqrt{17}} \Big( \left[\ln \left|\dfrac{3 - \sqrt{17}}{3+ \sqrt{17}} \right|\right] - \left[\ln \left|\dfrac{1+\sqrt{17}}{1-\sqrt{17}}\right|\right] \big)
I = - \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{(3 - \sqrt{17})(1 - \sqrt{17})}{(3+ \sqrt{17})(1 + \sqrt{17})} \right|\right]
I = - \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{20 - 4\sqrt{17}}{20 + 4\sqrt{17}} \right|\right]
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{20 + 4\sqrt{17}}{20 - 4\sqrt{17}} \right|\right]
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{5 + \sqrt{17}}{5 - \sqrt{17}} \right|\right]
Multiplying and dividing by 5 + \sqrt{17}
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{(5 + \sqrt{17})(5 + \sqrt{17})}{(5 - \sqrt{17})(5 + \sqrt{17})} \right|\right]
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{25 + 10\sqrt{17} + 17}{25 - 17} \right|\right]
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{42 + 10\sqrt{17}}{8} \right|\right]
I = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{21 + 5\sqrt{17}}{4} \right|\right]
Final Answer: \boxed{\int_{0}^{2} \dfrac{dx}{x+4-x^{2}} = \dfrac{1}{\sqrt{17}} \left[\ln \left|\dfrac{21 + 5\sqrt{17}}{4} \right|\right] }
Question 7: Evaluate \int_{-1}^{1}\dfrac{dx}{x^{2}+2x+5}
Solution:
I = \int_{-1}^{1} \dfrac{dx}{x^{2}+2x+5}
Completing the square: x^{2}+2x+5 = (x+1)^{2}+2^{2}
I = \int_{-1}^{1} \dfrac{dx}{(x+1)^{2}+2^{2}}
Let t = x+1 \implies dx = dt.
Limits: when x=-1, t=0; when x=1, t=2.
I = \int_{0}^{2} \dfrac{dt}{t^{2}+4}
I = \left[\dfrac{1}{2}\tan^{-1}\left(\dfrac{t}{2}\right)\right]_{0}^{2}
I = \dfrac{1}{2} \left[\tan^{-1}1 - \tan^{-1}0 \right]
I = \dfrac{1}{2}\left(\dfrac{\pi}{4}-0\right)
I = \dfrac{\pi}{8}
Final Answer: \boxed{\int_{-1}^{1} \dfrac{dx}{x^{2}+2x+5} = \dfrac{\pi}{8}}
Question 8: Evaluate \int_{1}^{2}\left(\dfrac{1}{x}-\dfrac{1}{2x^{2}}\right)e^{2x} dx
Solution:
I = \int_{1}^{2}\left(\dfrac{1}{x}-\dfrac{1}{2x^{2}}\right)e^{2x} dx
Let t = 2x \implies dt = 2 dx \implies \frac{dt}{2} = dx
Limits when x = 1, t = 2 ; when x = 2, t = 4
I = \int_{2}^{4}\left(\dfrac{2}{t}-\dfrac{2}{t^{2}}\right)e^{t} \ \frac{dt}{2}
I = \int_{2}^{4}\left(\dfrac{1}{t}-\dfrac{1}{t^{2}}\right)e^{t} \ dt
Here f(x) = \dfrac{1}{t} \ \text{and} \ f'(x) = \dfrac{-1}{t^2}
We know, \int e^x [f(x) + f'(x)] dx = e^x f(x) + C
I = \int_{2}^{4}\left(\dfrac{1}{t} + \Big(-\dfrac{1}{t^{2}} \Big) \right) e^{t} \ dt
I = \Big[e^{t} \cdot \dfrac{1}{t} \Big]_{2}^{4}
I = \Big[\frac{e^{4}}{4} - \frac{e^{2}}{2} \Big]
I = \dfrac{e^2(e^2 - 2)}{4}
Final Answer: \boxed{ \int_{1}^{2}\left(\dfrac{1}{x}-\dfrac{1}{2x^{2}}\right)e^{2x} dx = \dfrac{e^2(e^2 - 2)}{4} }
Question 9: Find the value of \int_{1/3}^{1}\dfrac{(x-x^{3})^{1/3}}{x^{4}} \ dx
(A) 6
(B) 0
(C) 3
(D) 4
Solution:
I = \int_{1/3}^{1}\dfrac{(x-x^{3})^{1/3}}{x^{4}} \ dx
I = \int_{1/3}^{1}\dfrac{(x^3(\tfrac{1}{x^2}-1))^{1/3}}{x^{4}} dx
I = \int_{1/3}^{1}\dfrac{(\tfrac{1}{x^2}-1)^{1/3}}{x^{3}} dx
Let t = \dfrac{1}{x^{2}}-1 \implies dt = -\dfrac{2}{x^{3}}dx.
\dfrac{-dt}{2} = \dfrac{dx}{x^3}
Limits when x = \frac{1}{3}, t = 8 ; when x = 1, t = 0
So, I = \int_{8}^{0} t^{1/3}\cdot \dfrac{-dx}{2}
I = \frac{1}{2} \int_{8}^{0} - t^{1/3} \ dt
I = \dfrac{1}{2}\int_{0}^{8} t^{1/3} \ dt
I = \dfrac{1}{2} \Big[ \dfrac{t^{\tfrac{4}{3}}}{\tfrac{4}{3}}\Big]_{0}^{8}
I = \dfrac{3}{8} \Big[ 8^{\tfrac{4}{3}} - 0^{\tfrac{4}{3}} \Big]
I = \dfrac{3}{8} \Big[ 16 \Big]
I = 6
\boxed{ \int_{1/3}^{1}\dfrac{(x-x^{3})^{1/3}}{x^{4}} \ dx = 6}
Correct Option: (A)
Question 10: If f(x)=\int_{0}^{x} t\sin t \ dt, then find f'(x)
(A) \cos x + x \sin x
(B) x \sin x
(C) x \cos x
(D) \sin x + x \cos x
Solution:
f(x)=\int_{0}^{x} t\sin t \ dt
Differentiating,
f'(x) = \dfrac {d}{dx} \int_{0}^{x} t\sin t \ dt
f'(x) = \Big[ t \sin t \Big]_{0}^{x}
f'(x) = x \sin x - 0
f'(x) = x\sin x
\boxed{f'(x) = x\sin x}
Correct Option: (B)